Abstract

Quadrilateral meshes offer certain advantages compared to triangular ones, such as reduced number of elements and alignment with problem-specific directions. We present a pipeline for the generation of quadrilateral meshes on complex geometries. It is based on two key components: robust surface meshing and efficient indirect conversion of a triangular mesh to an all-quad one. The input is a valid geometric surface mesh, i.e., a triangulation that accurately represents the geometry of the model. A right-angled triangular surface mesh is initially created by continuously modifying the input mesh while always preserving its topological validity. The main advantages of our local mesh modification-based approach are to (i) allow the generation of meshes that are globally aligned with a given direction field and (ii) to reliably handle non-manifold feature edges (in multi-volume models) and small features. The final quadrilateral mesh is obtained by merging pairs of triangles into quadrilaterals. We develop a novel bipartite labeling scheme in order to identify and correct inconsistent pairings. The procedure is based on local operations and is much more efficient than previous global strategies for tri-to-quad conversion. The whole pipeline is tested on a large number of models with diverse characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call