Abstract

Abstract Objectives Develop statistical methods for survival models to indirectly adjust hazard ratios of environmental exposures for missing risk factors. Methods A partitioned regression approach for linear models is applied to time to event survival analyses of cohort study data. Information on the correlation between observed and missing risk factors is obtained from ancillary data sources such as national health surveys. The relationship between the missing risk factors and survival is obtained from previously published studies. We first evaluated the methodology using simulations, by considering the Weibull survival distribution for a proportional hazards regression model with varied baseline functions, correlations between an adjusted variable and an adjustment variable as well as selected censoring rates. Then we illustrate the method in a large, representative Canadian cohort of the association between concentrations of ambient fine particulate matter and mortality from ischemic heart disease. Results Indirect adjustment for cigarette smoking habits and obesity increased the fine particulate matter-ischemic heart disease association by 3%–123%, depending on the number of variables considered in the adjustment model due to the negative correlation between these two risk factors and ambient air pollution concentrations in Canada. The simulations suggested that the method yielded small relative bias ( Conclusions This method can accommodate adjustment for multiple missing risk factors simultaneously while accounting for the associations between observed and missing risk factors and between missing risk factors and health endpoints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.