Abstract

This paper presents the design and implementation of a novel adaptive trajectory tracking controller for a nonholonomic wheeled mobile robot (WMR) with unknown parameters and uncertain dynamics. The learning ability of neural networks is used to design a robust adaptive backstepping controller that does not require the knowledge of the robot dynamics. The kinematic controller gains are tuned on-line to minimize the velocity error and improve the trajectory tracking characteristics. The performance of the proposed control algorithm is verified and compared with the classical backstepping controller through simulation and experiments on a commercial mobile robot platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.