Abstract

In this study, we investigate an error data-based trajectory planner and indirect adaptive fuzzy control for a class of wheeled inverted pendulum vehicle systems. Based on the error dynamics, the closed-loop trajectory planner can generate the desired velocity values. Using the virtual acceleration input for the tilt angle subsystem, composite control for the rotational and longitudinal subsystems can be constructed via indirect adaptive fuzzy and sliding mode control approaches to achieve simultaneous velocity tracking and tilt angle stabilization. We rigorously prove the system stability and convergence of the tracking error signals using the Lyapunov theory and LaSalle's invariance theorem. The results of our numerical simulations demonstrated the efficiency of the proposed control strategies and the implementations of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.