Abstract
AbstractThe development of 3D soft‐robotic components is currently hindered by material limitations associated with conventional 3D printing techniques. To overcome this challenge, an indirect 3D printing approach based on the fabrication of 3D printed sacrificial templates is proposed. High‐resolution micromolds produced by direct laser writing are infused with polymers and then dissolved, leading to the final 3D printed soft microstructures. This method is used to indirectly print 3D and 4D soft microrobots. The versatility of this technique is shown through the fabrication and actuation of gelatin helices filled with magnetic nanoparticles. In addition, it is shown that stent‐like microstructures with shape memory properties can be manufactured with minimum features of 5 µm, which is 40 times smaller than those reported to date. In summary, the utilization of this technique can overcome obstacles associated with the fabrication of soft microrobots and surgical tools for minimally invasive surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.