Abstract

Arbuscular mycorrhizal (AM) fungi, as beneficial soil microorganisms, inevitably interact with indigenous microorganisms, regulating plant growth and nutrient utilization in natural habitats. However, how indigenous microorganisms affect the benefits of growth and nutrition regulated by inoculated AM fungi for plants in karst ecosystem habitats remains unclear today. In this experiment, the Gramineae species Setaria viridis vs. Arthraxon hispidus and the Compositae species Bidens pilosa vs. Bidens tripartita exist in the initial succession stage of the karst ecosystem. These plant species were planted into different soil microbial conditions, including AM fungi soil (AMF), AM fungi interacting with indigenous microorganisms soil (AMI), and a control soil without AM fungi and indigenous microorganisms (CK). The plant biomass, nitrogen (N), and phosphorus (P) were measured; the effect size of different treatments on these variables of plant biomass and N and P were simultaneously calculated to assess plant responses. The results showed that AMF treatment differently enhanced plant biomass accumulation, N, and P absorption in all species but reduced the N/P ratio. The AMI treatment also significantly increased plant biomass, N and P, except for the S. viridis seedlings. However, regarding the effect size, the AM fungi effect on plant growth and nutrition was greater than the interactive effect of AM fungi with indigenous microorganisms. It indicates that the indigenous microorganisms offset the AM benefits for the host plant. In conclusion, we suggest that the indigenous microorganisms offset the benefits of inoculated AM fungi in biomass and nutrient accumulation for pioneer plants in the karst habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call