Abstract
Rising costs of survey data collection and declining response rates have caused researchers to turn to non-probability samples to make descriptive statements about populations. However, unlike probability samples, non-probability samples may produce severely biased descriptive estimates due to selection bias. The paper develops and evaluates a simple model-based index of the potential selection bias in estimates of population proportions due to non-ignorable selection mechanisms. The index depends on an inestimable parameter ranging from 0 to 1 that captures the amount of deviation from selection at random and is thus well suited to a sensitivity analysis. We describe modified maximum likelihood and Bayesian estimation approaches and provide new and easy-to-use R functions for their implementation. We use simulation studies to evaluate the ability of the proposed index to reflect selection bias in non-probability samples and show how the index outperforms a previously proposed index that relies on an underlying normality assumption. We demonstrate the use of the index in practice with real data from the National Survey of Family Growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.