Abstract

Human extravehicular activity (EVA) is essential to space exploration and involves risk of decompression sickness (DCS). On Earth, the effect of microgravity on physiological systems is simulated in an experimental model where subjects are confined to a 6° head-down bed rest (HDBR). This model was used to investigate various resting and exercise regimen on the formation of venous gas emboli (VGE), an indicator of decompression stress, post-hyperbaric exposure. Eight healthy male subjects participating in a bed rest regimen also took part in this study, which incorporated five different hyperbaric exposure (HE) interventions made before, during and after the HDBR. Interventions i–iv were all made with the subjects lying in 6° HD position. They included (C1) resting control, (C2) knee-bend exercise immediately prior to HE, (T1) HE during the fifth week of the 35-day HDBR period, (C3) supine cycling exercise during the HE. In intervention (C4), subjects remained upright and ambulatory. The HE protocol followed the Royal Navy Table 11 with 100 min spent at 18 m (280 kPa), with decompression stops at 6 m for 5 min, and at 3 m for 15 min. Post-HE, regular precordial Doppler audio measurements were made to evaluate any VGE produced post-dive. VGE were graded according to the Kisman Masurel scale. The number of bubbles produced was low in comparison to previous studies using this profile [Kisman integrated severity score (KISS) ranging from 0–1], and may be because subjects were young, and lay supine during both the HE and the 2 h measurement period post-HE for interventions i–iv. However, the HE during the end of HDBR produced significantly higher maximum bubble grades and KISS score than the supine control conditions (p < 0.01). In contrast to the protective effect of pre-dive exercise on bubble production, a prolonged period of bed rest prior to a HE appears to promote the formation of post-decompression VGE. This is in contrast to the absence of DCS observed during EVA. Whether this is due to a difference between hypo- and hyperbaric decompression stress, or that the HDBR model is a not a good model for decompression sensitivity during microgravity conditions will have to be elucidated in future studies.

Highlights

  • Human extravehicular activity (EVA) is an essential part of space exploration, having taken place on the moon, and continuing from space vehicles and the International Space Station (ISS)

  • One had already experienced substantial weight loss (≈ 20 kg) before being enlisted in the study and this continued during head-down bed rest (HDBR) [change in weight from first measurement (C1) to last (C4) was 11.2 kg; see Table 1]; it was felt that the venous gas emboli (VGE) data might be affected by this weight loss and change in body mass index (BMI)

  • The median Kisman integrated severity score (KISS) score for Control 1 (C1) was zero

Read more

Summary

Introduction

Human extravehicular activity (EVA) is an essential part of space exploration, having taken place on the moon, and continuing from space vehicles and the International Space Station (ISS). The Russian ‘Orlan’ suit has an internal pressure of 38.6 kPa (comparable to 7440 m altitude), while the United States extravehicular mobility unit (EMU) suit maintains 29.6 kPa (9250 m) (Norfleet and Butler, 2001). This means that personnel are subject to decompression when moving from ISS ambient pressure to that of the suit. A number of studies have examined DCS risk at altitudes comparable to the corresponding internal pressure of the space suits mentioned above. The United States Space program found a 20–40% DCS incidence with groundbased simulated EVAs (Conkin, 2001), these protocols have produced no reported incidence of DCS in space (Conkin et al, 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call