Abstract
Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0–2cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt–clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.