Abstract
Thermal tolerance windows were investigated in lugworms Arenicola marina (L.) from the North Sea, the English Channel and the Atlantic during winter and summer seasons. We adopted the concept of oxygen- and capacity-limited thermal tolerance and tested a variety of methods for their suitability to identify characteristics of the respective thermal window, such as critical, pejus (lat.: getting worse) and optimum temperatures (Tc, Tp and Topt), as well as temperature-dependent perfor- mance. First, the effect of acute temperature changes on oxygen consumption and pumping activity was examined in artificial burrows ventilated by lugworms collected in winter and summer from North Sea mudflats (acclimation temperatures 5 and 10°C). Second, the window of acutely temperature- dependent growth was evaluated by following the integration of uniformly labelled 13 C-L-phenylala- nine into proteins of the cuticulo-muscular tube, using nuclear magnetic resonance spectroscopy, possibly providing access to Tp values. Third, seasonal changes in haemoglobin half-saturation oxy- gen tension (P50) and haemoglobin oxygen status in vivo were studied in lugworms from the North Sea population. Tc values were defined by use of oxygen consumption measurements, whereas pumping activity, growth performance and tissue oxygenation allowed determination of Topt. Our results show that the thermal window of actively ventilating lugworms is narrower in winter than in summer. The acute optimum temperature of growth performance was tilted towards the lower Tc and likely shifts with acclimation. Methods were found suitable to identify the acute thermal window of oxygen-limited thermal tolerance in the lugworm. Consecutive comparison of populations during various seasons in a latitudinal cline should thus lead to a better understanding of the impacts of climate change on marine ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.