Abstract
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (∼100–1000 nmol cm− 3d−1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.