Abstract

Many variogram (or covariance) models that are valid—or realizable—models of Gaussian random functions are not realizable indicator variogram (or covariance) models. Unfortunately there is no known necessary and sufficient condition for a function to be the indicator variogram of a random set. Necessary conditions can be easily obtained for the behavior at the origin or at large distance. The power, Gaussian, cubic or cardinal-sine models do not fulfill these conditions and are therefore not realizable. These considerations are illustrated by a Monte Carlo simulation demonstrating nonrealizability over some very simple three-point configurations in two or three dimensions. No definitive result has been obtained about the spherical model. Among the commonly used models for Gaussian variables, only the exponential appears to be a realizable indicator variogram model in all dimensions. It can be associated with a mosaic, a Boolean or a truncated Gaussian random set. In one dimension, the exponential indicator model is closely associated with continuous-time Markov chains, which can also lead to more variogram models such as the damped oscillation model. One-dimensional random sets can also be derived from renewal processes, or mosaic models associated with such processes. This provides an interesting link between the geostatistical formalism, focused mostly on two-point statistics, and the approach of quantitative sedimentologists who compute the probability distribution function of the thickness of different geological facies. The last part of the paper presents three approaches for obtaining new realizable indicator variogram models in three dimensions. One approach consists of combining existing realizable models. Other approaches are based on the formalism of Boolean random sets and truncated Gaussian functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.