Abstract

Gaussian process (GP) models are commonly used in the analysis of computer experiments. Variable selection in GP models is of significant scientific interest but existing solutions remain unsatisfactory. For each variable in a GP model, there are two potential effects with different implications: one is on the mean function, and the other is on the covariance function. However, most of the existing research on variable selection for GP models has focused only on one of the effects. To tackle this problem, we propose an indicator-based Bayesian variable selection procedure to take into account the effects from both the mean and covariance functions. A variable is defined to be inactive if both effects are not significant, and an indicator is used to represent the variable being active or not. For active variables, the proposed method adopts different prior assumptions to capture the two effects. The performance of the proposed method is evaluated by both simulations and real applications in computer experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.