Abstract
Generating highly spin-polarized currents at the nanoscale is essential for spin current manipulations and spintronic applications. We find indications for up to 100% spin-polarized currents across nickel oxide atomic junctions formed between two nickel electrodes. The degree of spin polarization is probed by analyzing the shot noise resulting from the discrete statistics of spin-polarized electron transport. We show that spin filtering can be significantly enhanced by local chemical modifications at the single-atom level. This approach paves the way for effective manipulations of spin transport at the fundamental limit of miniaturization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.