Abstract
Predicting water quality accurately is critically important in real-life water resource management. This work proposes an approach based on supervised machine learning to predict water quality. Motivated, by the success of the non-smooth loss function for supervised learning problems [22], we reformulate the learning problem as a regularized optimization problem whose fidelity term is the hinge loss function and the hypothesis space is a polynomial approximation. To deal with the non-differentiability of the loss function, a special smoothing function is proposed. Then, the obtained optimization problem is solved by an improved conjugate gradient algorithm. Finally,some experiments results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistics, Optimization & Information Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.