Abstract

India receives 80% of its annual rainfall during the Indian Summer Monsoon (ISM) season from June to September. The climate model simulations of Coupled Model Intercomparison Project 6 (CMIP6) robustly indicate a strengthening of the Indian summer monsoon rainfall in a warming climate, despite a reduced land-sea thermal contrast. In this study, we analysed the ISM precipitation trend over India from 1979 to 2022 using rain gauge, satellite-derived, and atmospheric re-analysis data. The results show a broad-scale increasing precipitation trend over major parts of India. However, there is strong spatial variability, with a pronounced precipitation increase over Western India and decreasing precipitation in parts of north-eastern India. The precipitation trend pattern is associated with sea surface temperature (SST) and wind anomalies over the Indian Ocean. Observations indicate a basin-scale warming of the Indian Ocean (IO) that is more prominent in the west equatorial region and Arabian Sea (AS), altering the east-west SST gradient over this period, which is associated with increased equatorial winds during the summer monsoon period. Evaporation correspondingly increases over the Indian Ocean, with widespread increases along the typical atmospheric moisture transport pathway over the western Indian Ocean during the summer monsoon, driven by both ocean surface warming and increasing winds. Increased evaporation results in more moisture being available in the atmosphere over the western Indian Ocean, which subsequently feeds ISM precipitation. Furthermore, a strong correlation between the AS moisture transport and the ISM rainfall has been noticed over the central and western parts of India, where increased precipitation trends exist. A moisture budget trend analysis over Western India suggests that the large increase in moisture convergence in this area is driven by increased moisture entering from the AS concomitant with strongly reduced outgoing moisture transport through the eastern and northern boundaries. A detailed analysis shows that the increased moisture convergence in Western India is predominantly attributed to changes in the wind pattern driven by anomalously reduced winds in the northern part of the peninsula. In addition, the teleconnections between ISM rainfall and large-scale natural climate variability modes such as ENSO and IOD were also shown to modulate precipitation variations over India during the considered period at inter-annual to multi-decadal scales. 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call