Abstract

Indian hedgehog (Ihh) is a member of hedgehog peptides family that exerts diverse effects on multiple cellular functions. Since Ihh expression is elevated in the pancreas of chronic pancreatitis patients, Ihh has been assumed to participate in the chronic pancreatic injury, especially in pancreatic fibrosis. However, its function in pancreatic fibrosis is still unknown. We thus examined Ihh effects on rat activated pancreatic stellate cells (PSCs) that play a central role in pancreatic fibrosis. Activated PSCs express both patched-1 and smoothened that are essential components of hedgehog receptor system. Ihh did not alter the PSC expression of collagen-1 or alpha-smooth muscle actin, a parameter of PSC transformation, or did not change PSC proliferation. However, Ihh enhanced PSC migration in both chemotactic and chemokinetic manners. Furthermore, Ihh increased the amount of membrane-type 1 matrix metalloproteinase (MT1-MMP) and altered its localization on the plasma membrane, which plays a stimulatory role in cellular migration. In addition, tissue inhibitor of metalloproteinase-2 (TIMP-2) attenuated Ihh-stimulated PSC migration. Since most hedgehog intracellular signals are mediated by Gli-1 transcription factor, we investigated its contribution to Ihh-enhancement of PSC migration. Ihh induced Gli-1 nuclear accumulation in PSCs, indicating that Ihh stimulates Gli-1-dependent signaling pathway in PSCs. Unexpectedly, however, adenovirus-mediated Gli-1 overexpression blocked the Ihh enhancement of both MT1-MMP localization on the plasma membrane and PSC migration. Furthermore, reduction of Gli-1 expression with RNA interference augmented Ihh-stimulated PSC migration. These data indicate that Ihh promotes PSC migration by enhancing MT1-MMP localization on the plasma membrane but is negatively regulated by Gli-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.