Abstract

Existing encoding schemes and index structures proposed for XML query processing primarily target the containment relationship, specifically the parent–child and ancestor–descendant relationship. The presence of preceding-sibling and following-sibling location steps in the XPath specification, which is the de facto query language for XML, makes the horizontal navigation, besides the vertical navigation, among nodes of XML documents a necessity for efficient evaluation of XML queries. Our work enhances the existing range-based and prefix-based encoding schemes such that all structural relationships between XML nodes can be determined from their codes alone. Furthermore, an external-memory index structure based on the traditional B+-tree, XL+-tree(XML Location+-tree), is introduced to index element sets such that all defined location steps in the XPath language, vertical and horizontal, top-down and bottom-up, can be processed efficiently. The XL+-trees under the range or prefix encoding scheme actually share the same structure; but various search operations upon them may be slightly different as a result of the richer information provided by the prefix encoding scheme. Finally, experiments are conducted to validate the efficiency of the XL+-tree approach. We compare the query performance of XL+-tree with that of R-tree, which is capable of handling comprehensive XPath location steps and has been empirically shown to outperform other indexing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.