Abstract
BackgroundCurrent cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest. In this context, reporter expression is controlled by known genetic elements that may only partially capture gene regulation and by unknown features of chromatin specific to the integration site. As an alternative technology, we applied highly efficient gene-targeting with recombinant adeno-associated virus to precisely integrate a luciferase reporter gene into exon 1 of the HeLa cell tumor necrosis factor-alpha (TNF-α) gene. Drugs known to induce TNF-α expression were then used to compare the authenticity of gene-targeted and randomly integrated transcriptional reporters.ResultsTNF-α-targeted reporter activity reflected endogenous TNF-α mRNA expression, whereas randomly integrated TNF-α reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), currently used in cancer clinical trials to induce TNF-α gene transcription, was only effective at inducing reporter expression from TNF-α gene-targeted cells.ConclusionWe conclude that gene-targeted reporter cell lines provide predictive indexing of gene transcription for drug discovery.
Highlights
Current cell-based drug screening technologies utilize randomly integrated reporter genes to index transcriptional activity of an endogenous gene of interest
The insertion site in exon 1 is immediately downstream of the tumor necrosis factor (TNF)-α start codon, fusing the Renilla luciferase (R-Luc) gene in-frame to the TNF-α transcript
Since the left homologous arm of the targeting vector encodes the TNF-α core promoter and contains other regulatory elements necessary for initiation of transcription, we are able to compare reporter expression profiles between the targeted and non-targeted cell lines, the latter of which are derived from the random integration of AV.TNF-RL.targ in HeLa cells
Summary
TNF-α-targeted reporter activity reflected endogenous TNF-α mRNA expression, whereas randomly integrated TNF-α reporter lines gave variable expression in response to transcriptional and epigenetic regulators. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), currently used in cancer clinical trials to induce TNF-α gene transcription, was only effective at inducing reporter expression from TNF-α gene-targeted cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.