Abstract

Since the definition of quasiperiodicity is intimately connected to the indexing of a Fourier transform, for the case of an icosahedral solid, the step necessary to prove, using diffraction, that an object is quasiperiodic, is described. Various coordinate systems are discussed and reasons are given for choosing one aligned with a set of three orthogonal two-fold axes. Based on this coordinate system, the main crystallographic projections are presented and several analyzed single-crystal electron diffraction patterns are demonstrated. The extinction rules for three of the five icosahedral Bravais quasilattices are compared, and some simple relationships with the six-dimensional cut and projection crystallography are derived. This analysis leads to a simple application for indexing powder diffraction patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.