Abstract
This paper proposes an indexing procedure for improving the performance of query processing on a fuzzy database. It focuses on the case when a necessity-measured atomic flexible condition is imposed on the values of a fuzzy numerical attribute. The proposal is to apply a classical indexing structure for numerical crisp data, a B +-tree combined with a Hilbert curve. The use of such a common indexing technique makes its incorporation into current systems straightforward. The efficiency of the proposal is compared with that of another indexing procedure for similar fuzzy data and flexible query types. Experimental results reveal that the performance of the proposed method is similar and more stable than that of its competitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.