Abstract
Cut reductions are defined for a Kripke-style formulation of modal logic in terms of indexed systems of sequents. A detailed proof of the normalization (cut-elimination) theorem is given. The proof is uniform for the propositional modal systems with all combinations of reflexivity, symmetry and transitivity for the accessibility relation. Some new transformations of derivations (compared to standard sequent formulations) are needed, and some additional properties are to be checked. The display formulations of the systems considered can be presented as encodings of Kripke-style formulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.