Abstract
Whenever equivalent mixed strategies of a player are identified (topologically) in a normal-form game, the resulting space may not be a simplex anymore but is a general polytope. We show that an index/degree theory of equilibria can be developed in full generality for games in which the strategy sets of the players are general polytopes and their payoff functions are multiaffine. Index and degree theories work as a tool that helps identify equilibria that are robust to payoff perturbations of the game. Because the strategy set of each player is the result of the identification of equivalent mixed strategies, the resulting polytope is of lower dimension than the original mixed strategy simplices. This, together with an index theory, has algorithmic applications for checking for robustness of equilibria as well as finding equilibria in extensive-form games.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.