Abstract

Text categorization with machine learning algorithms generally reckons to possess horizontal set of classes. Several advanced machine learning algorithms have been designed in the past few decades. With the growing research work for text categorization, it has become important to categorize the research outcome and provide the learners with an effective machine learning method, a framework called, Hierarchical Decision Tree and Deep Neural Network (HDT-DNN).It investigates machine learning algorithms to create horizontal set of classes and it is used for classification of text. With this objective, a novel and efficient text categorization framework based on decision tree model is used in order to categorize text according to superior and subordinate level. The text to be categorized is presented in the form of a tree with parent text category being superior to all. The intermediate level represents the text that is both superior and subordinate. Then Deep Neural Network model is presented initiating compositional model, where the text has to be categorized, as a layered integration of primitives from the constructed decision tree model. The extra layers enable composition of features from lower layers, potentially modeling complex text with fewer units than a similarly carried out shallow network producing hierarchical classification. The significance of the impact of HDT-DNN framework is evaluated through empirical study. Extensive experiments are carried out and the performance of HDT-DNN framework is evaluated and compared with existing state-of-art methods using parameters such as precision, classification accuracy, classification time, with respect to varied number of features and document size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.