Abstract
This paper studies the Turing degrees of various properties defined for universal numberings, that is, for numberings which list all partial-recursive functions. In particular properties relating to the domain of the corresponding functions are investigated like the set DEQ of all pairs of indices of functions with the same domain, the set DMIN of all minimal indices of sets and DMIN ⁎ of all indices which are minimal with respect to equality of the domain modulo finitely many differences. A partial solution to a question of Schaefer is obtained by showing that for every universal numbering with the Kolmogorov property, the set DMIN ⁎ is Turing equivalent to the double jump of the halting problem. Furthermore, it is shown that the join of DEQ and the halting problem is Turing equivalent to the jump of the halting problem and that there are numberings for which DEQ itself has 1-generic Turing degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.