Abstract

Index funds consist of a subset of stocks, an index tracking portfolio, included in the market index. The index tracking portfolio aims to match the performance of the benchmark index. In this paper, we propose a hybrid model for solving the multiperiod index tracking problem, which includes rebalancing concerns, transaction costs, limits on the number of stocks, and diversification by sector, market capitalization, and stock weight. Our hybrid model combines the genetic algorithm (GA) to select stocks of the index tracking portfolio and mixed-integer nonlinear programming (MINLP) to estimate its weights. Finally, we apply our proposed hybrid model to the S&P500 to find an index tracking portfolio that includes those constraints. The results show that our hybrid model is able to create an index fund whose return rate is similar to the market index with significantly lower risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.