Abstract

Agricultural drought is a type of natural disaster that seriously impacts food security. Because the relationships among short-term rainfall, soil moisture, and crop growth are complex, accurate identification of a drought situation is difficult. In this study, using a conceptual model based on the relationship between water deficit and crop yield reduction, we evaluated the drought process in a typical rainfed agricultural region, Hailar county in Inner Mongolia autonomous region, China. To quantify drought, we used the precipitation-based Standardized Precipitation Index (SPI), the soil moisture-based Crop Moisture Index (CMI), as well as the Normalized Difference Vegetation Index (NDVI). Correlation analysis was conducted to examine the relationships between dekad-scale drought indices during the growing season (May-September) and final yield, according to data collection from 2000 to 2010. The results show that crop yield has positive relationships with CMI from mid-June to mid-July and with the NDVI anomaly throughout July, but no correlation with SPI. Further analysis of the relationship between the two drought indices shows that the NDVI anomaly responds to CMI with a lag of 1 dekad, particularly in July. To examine the feasibility of employing these indices for monitoring the drought process at a dekad time scale, a detailed drought assessment was carried out for selected drought years. The results confirm that the soil moisture-based vegetation indices in the late vegetative to early reproductive growth stages can be used to detect agricultural drought in the study area. Therefore, the framework of the conceptual model developed for drought monitoring can be employed to support drought mitigation in the rainfed agricultural region of Northern China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.