Abstract

The threshold current density of narrow (1.5 {\mu}m) ridge-waveguide InGaN multi-quantum-well laser diodes, as well as the shape of their lateral far-field patterns, strongly depend on the etch depth of the ridge waveguide. Both effects can be attributed to strong index-antiguiding. A value of the antiguiding factor R = 10 is experimentally determined near threshold by measurements of the current-dependent gain and refractive index spectra. The device performances are simulated self-consistently solving the Schr\"odinger-Poisson equations and the equations for charge transport and waveguiding. Assuming a carrier-induced index change which matches the experimentally determined antiguiding factor, both the measured high threshold current and the shape of the far-field pattern of lasers with shallow ridges can be reproduced theoretically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.