Abstract

We obtain the sharp version of the uncertainty principle recently introduced in [46], and improved by [12], relating the size of the zero set of a continuous function having zero mean and the optimal transport cost between the mass of the positive part and the negative one. The result is actually valid for the wide family of metric measure spaces verifying a synthetic lower bound on the Ricci curvature, namely the MCP(K,N) or CD(K,N) condition, thus also extending the scope beyond the smooth setting of Riemannian manifolds.Applying the uncertainty principle to eigenfunctions of the Laplacian in possibly non-smooth spaces, we obtain new lower bounds on the size of their nodal sets in terms of the eigenvalues. Those cases where the Laplacian is possibly non-linear are also covered and applications to linear combinations of eigenfunctions of the Laplacian are derived. To the best of our knowledge, no previous results were known for non-smooth spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.