Abstract

AbstractIf κ < λ are such that κ is indestructibly supercompact and λ is 2λ supercompact, it is known from [4] that δ is a measurable cardinal which is not a limit of measurable cardinals and δ violates level by level equivalence between strong compactness and supercompactness} must be unbounded in κ. On the other hand, using a variant of the argument used to establish this fact, it is possible to prove that if κ < λ are such that κ is indestructibly supercompact and λ is measurable, then δ is a measurable cardinal which is not a limit of measurable cardinals and δ satisfies level by level equivalence between strong compactness and supercompactness} must be unbounded in κ. The two aforementioned phenomena, however, need not occur in a universe with an indestructibly supercompact cardinal and sufficiently few large cardinals. In particular, we show how to construct a model with an indestructibly supercompact cardinal κ in which if δ < κ is a measurable cardinal which is not a limit of measurable cardinals, then δ must satisfy level by level equivalence between strong compactness and supercompactness. We also, however, show how to construct a model with an indestructibly supercompact cardinal κ in which if δ < κ is a measurable cardinal which is not a limit of measurable cardinals, then δ must violate level by level equivalence between strong compactness and supercompactness. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.