Abstract
Ethylcellulose (EC) is a crucial cellulose derivative with widespread applications, particularly in the pharmaceutical industry, where precise property adjustments through chemical modification are imperative. The degree of substitution (DS) and the localization of substituents along the cellulose chains are pivotal factors in this process. However, the impact of the substituent location within the repeating unit of EC remains unexplored. To address this gap, we conducted molecular dynamics simulations on amorphous EC, comparing randomly and uniformly substituted ethyl groups in the repeating units. This comprehensive study of pairwise interactions revealed significant differences in intramolecular and intermolecular hydrogen-bonding capabilities, depending on whether the hydroxyl groups were substituted at C2, C3, or C6. While our simulations demonstrated that substituent localization in the repeating unit influenced the density, number of hydrogen bonds, and conformations, the DS emerged as the dominant determinant. This insight led us to propose and validate a hypothesis: a straightforward linear function using the properties of uniform models and molar fractions can predict the properties of randomly substituted EC with a given DS. This innovative approach is anticipated to contribute to the selection of cellulose derivatives with desirable properties for the pharmaceutical industry and new applications in other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.