Abstract
A recently introduced procedure involving a mechanistic switch from reversible addition–fragmentation chain transfer (RAFT) polymerization to ring-opening polymerization (ROP) to form diblock copolymers is applied to synthesize ABA (star) block copolymers. The synthetic steps include the polymerization of styrene with R-group designed RAFT agents, the transformation of the thiocarbonyl thio end groups into OH functionalities, and their subsequent chain extension by ROP. The obtained linear ABA poly(ε-caprolactone)-block-poly(styrene)-block-poly(ε-caprolactone) (pCL-b-pS-b-pCL) (12 500 g mol–1 ≤ Mn ≤ 33 000 g mol–1) and the star-shaped poly(styrene)-block-poly(ε-caprolactone) (Mn = 36 000 g mol–1) copolymers were analyzed by size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The focus of the current study is on the detailed characterization of the ABA (star) block polymers via multidimensional chromatographic techniques specifically high performance liquid chromatography coupled to size exclusion chromatography (HPLC-SEC). In particular, we demonstrate the first time separation of poly(ε-caprolactone) (pCL) homopolymer and additionally poly(styrene) (pS) from the ABA poly(ε-caprolactone)-b-poly(styrene)-b-poly(ε-caprolactone) and star-shaped poly(styrene)-b-poly(ε-caprolactone) block copolymer utilizing critical conditions (CC) for pCL with concomitant gradient elution liquid chromatography (GELC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.