Abstract

Context. As a result of the high-quality constraints available for the Sun, we are able to carry out detailed combined analyses using neutrino, spectroscopic, and helioseismic observations. These studies lay the ground for future improvements of the key physical components of solar and stellar models because ingredients such as the equation of state, the radiative opacities, or the prescriptions for macroscopic transport processes of chemicals are then used to study other stars in the Universe. Aims. We study the existing degeneracies in solar models using the recent high-metallicity spectroscopic abundances by comparing them to helioseismic and neutrino data and discuss the effect on their properties of changes in the micro and macro physical ingredients. Methods. We carried out a detailed study of solar models computed with a high-metallicity composition from the literature based on averaged 3D models that were claimed to resolve the solar modelling problem. We compared these models to helioseismic and neutrino constraints. Results. The properties of the solar models are significantly affected by the use of the recent OPLIB opacity tables and the inclusion of macroscopic transport. The properties of the standard solar models computed using the OPAL opacities are similar to those for which the OP opacities were used. We show that a modification of the temperature gradient just below the base of the convective zone is required to remove the discrepancies in solar models, particularly in the presence of macroscopic mixing. This can be simulated by a localised increase in the opacity of a few percent. Conclusions. We conclude that the existing degeneracies and issues in solar modelling are not removed by using an increase in the solar metallicity, in contradiction to what has been suggested in the recent literature. Therefore, standard solar models cannot be used as an argument for a high-metallicity composition. While further work is required to improve solar models, we note that direct helioseismic inversions indicate a low metallicity in the convective envelope, in agreement with spectroscopic analyses based on full 3D models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.