Abstract

Image registration is a fundamental task in various applications of medical image analysis and plays a crucial role in auxiliary diagnosis, treatment, and surgical navigation. However, cardiac image registration is challenging due to the large non-rigid deformation of the heart and the complex anatomical structure. To address this challenge, this paper proposes an independently trained multi-scale registration network based on an image pyramid. By down-sampling the original input image multiple times, we can construct image pyramid pairs, and design a multi-scale registration network using image pyramid pairs of different resolutions as the training set. Using image pairs of different resolutions, train each registration network independently to extract image features from the image pairs at different resolutions. During the testing stage, the large deformation registration is decomposed into a multi-scale registration process. The deformation fields of different resolutions are fused by a step-by-step deformation method, thereby addressing the challenge of directly handling large deformations. Experiments were conducted on the open cardiac dataset ACDC (Automated Cardiac Diagnosis Challenge); the proposed method achieved an average Dice score of 0.828 in the experimental results. Through comparative experiments, it has been demonstrated that the proposed method effectively addressed the challenge of heart image registration and achieved superior registration results for cardiac images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.