Abstract

Sparse regularization such as regularization is a quite powerful and widely used strategy for high-dimensional learning problems. The effectiveness of sparse regularization has been supported practically and theoretically by several studies. However, one of the biggest issues in sparse regularization is that its performance is quite sensitive to correlations between features. Ordinary regularization selects variables correlated with each other under weak regularizations, which results in deterioration of not only its estimation error but also interpretability. In this letter, we propose a new regularization method, independently interpretable lasso (IILasso), for generalized linear models. Our proposed regularizer suppresses selecting correlated variables, so that each active variable affects the response independently in the model. Hence, we can interpret regression coefficients intuitively, and the performance is also improved by avoiding overfitting. We analyze the theoretical property of the IILasso and show that the proposed method is advantageous for its sign recovery and achieves almost minimax optimal convergence rate. Synthetic and real data analyses also indicate the effectiveness of the IILasso.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.