Abstract

The dynamic behavior of commercial vehicles fitted with differentr types of suspension mechanisms and steering devices is investigated in this paper. Six vehicle models have been constructed: 2WS-SA is a standard two wheel steering bus with solid axles; 2WS-DW is a 2WSA vehicle with independent double wishbone suspension in front and rear axles; SSA-SA is a 2WS system with solid axles, the rear one being mounted on a self steered mechanism; SSA-DW is a vehicle with independent double wishbone suspension in the front axle, and a solid self steered rear axle; 4WS-SA has four wheel steering with solid axles; and 4WS-DW is a 4WS vehicle with independent double wishbone suspension in front and rear axles. The dynamic response of these models has been assessed in terms of lateral acceleration, yaw velocity, tire forces, tire force reserves, and slip angles. The expected advantages of a 4WS system (higher acceleration rates and lower slip angles) will be corroborated but, at the same time, it will be shown that they are obtained at the cost of lower force reserves. Self steered mechanisms produce smaller body slip angles, but it will be shown that they give rise to larger yaw velocity overshootings. The particular independent suspension analyzed does not show significant improvements with respect to the solid axle counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call