Abstract
AbstractThe tensor product of two graphs, G and H, has a vertex set V(G) × V(H) and an edge between (u,v) and (u′,v′) iff both u u′ ∈ E(G) and v v′ ∈ E(H). Let A(G) denote the limit of the independence ratios of tensor powers of G, lim, α(Gn)/|V(Gn)|. This parameter was introduced in [Brown, Nowakowski, Rall, SIAM J Discrete Math 9 (1996), 290–300], where it was shown that A(G) is lower bounded by the vertex expansion ratio of independent sets of G. In this article we study the relation between these parameters further, and ask whether they are in fact equal. We present several families of graphs where equality holds, and discuss the effect the above question has on various open problems related to tensor graph products. © 2006 Wiley Periodicals, Inc. J Graph Theory
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.