Abstract
We study different classes of digraphs, which are generalizations of tournaments, to have the property of possessing a maximal independent set intersecting every non-augmentable path (in particular, every longest path). The classes are the arc-local tournament, quasi-transitive, locally in-semicomplete (out-semicomplete), and semicomplete k-partite digraphs. We present results on strongly internally and finally non-augmentable paths as well as a result that relates the degree of vertices and the length of longest paths. A short survey is included in the introduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.