Abstract
Silencing of the Escherichia coli bgl operon by the histone-like nucleoid-structuring protein H-NS occurs at two levels. Binding of H-NS upstream of the promoter represses transcription initiation, whilst binding within the coding region is also proposed to repress transcription elongation. The latter, downstream level of repression is counteracted by the protease Lon and, thus, silencing of the bgl operon is more effective in lon mutants. Transposon-mutagenesis screens for suppression of this lon phenotype on bgl were performed and insertion mutations disrupting rpoS and crl were obtained, as well as mutations mapping upstream of the open reading frames of bglJ, leuO and dnaK. In rpoS and crl mutants, bgl promoter activity is known to be higher. Likewise, as shown here, bgl promoter activity is increased in the bglJ and leuO mutants, which express BglJ and LeuO constitutively. However, BglJ and LeuO have no impact on downstream repression. A dnaKJ mutant was isolated for the first time in the context of the bgl operon. The mutant expresses lower levels of DnaK than the wild-type. Interestingly, in this dnaKJ : : miniTn10 mutant, downstream repression of bgl by H-NS is less effective, whilst upstream repression by H-NS remains unaffected. Together, the data show that the two levels of bgl silencing by H-NS are regulated independently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.