Abstract

Addition of crosslinking antibody to B lymphocytes results in a rapid rise in cytoplasmic-free Ca2+ ([Ca2+]i) due to release of Ca2+ from internal stores and uptake of Ca2+ across the plasma membrane. Inositol 1,4,5-trisphosphate is believed to mediate the release of internal Ca2+ stores and has also been proposed to mediate extracellular Ca2+ entry. We have compared the properties of these two pathways for Ca2+ mobilization by dissociating the [Ca2+]i changes in ligand-activated human B cells after loading of the cells with the Ca2+ chelator BAPTA. In the present paper we show that: (a) the sustained increase in [Ca2+]i is due to increased unidirectional influx of external [Ca2+]i; (b) entry of extracellular Ca2+, but not release of internal stores, is sensitive to the transmembrane potential; and (c) entry of extracellular Ca2+, but not release of internal stores, is inhibited by increasing [Ca2+]i. These findings suggest that the permeation pathways mediating the translocation of Ca2+ across the plasma membrane and endoplasmic reticulum membrane are not identical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.