Abstract

BackgroundThe aim of this study is to identify independent pre-transplant cancer risk factors after kidney transplantation and to assess the utility of G-chart analysis for clinical process control. This may contribute to the improvement of cancer surveillance processes in individual transplant centers.Patients and Methods1655 patients after kidney transplantation at our institution with a total of 9,425 person-years of follow-up were compared retrospectively to the general German population using site-specific standardized-incidence-ratios (SIRs) of observed malignancies. Risk-adjusted multivariable Cox regression was used to identify independent pre-transplant cancer risk factors. G-chart analysis was applied to determine relevant differences in the frequency of cancer occurrences.ResultsCancer incidence rates were almost three times higher as compared to the matched general population (SIR = 2.75; 95%-CI: 2.33–3.21). Significantly increased SIRs were observed for renal cell carcinoma (SIR = 22.46), post-transplant lymphoproliferative disorder (SIR = 8.36), prostate cancer (SIR = 2.22), bladder cancer (SIR = 3.24), thyroid cancer (SIR = 10.13) and melanoma (SIR = 3.08). Independent pre-transplant risk factors for cancer-free survival were age <52.3 years (p = 0.007, Hazard ratio (HR): 0.82), age >62.6 years (p = 0.001, HR: 1.29), polycystic kidney disease other than autosomal dominant polycystic kidney disease (ADPKD) (p = 0.001, HR: 0.68), high body mass index in kg/m2 (p<0.001, HR: 1.04), ADPKD (p = 0.008, HR: 1.26) and diabetic nephropathy (p = 0.004, HR = 1.51). G-chart analysis identified relevant changes in the detection rates of cancer during aftercare with no significant relation to identified risk factors for cancer-free survival (p<0.05).ConclusionsRisk-adapted cancer surveillance combined with prospective G-chart analysis likely improves cancer surveillance schemes by adapting processes to identified risk factors and by using G-chart alarm signals to trigger Kaizen events and audits for root-cause analysis of relevant detection rate changes. Further, comparative G-chart analysis would enable benchmarking of cancer surveillance processes between centers.

Highlights

  • Kidney transplantation has become the preferred treatment option for patients with renal failure since the first successful clinical transplantation in 1954 [1, 2]

  • Increased SIRs were observed for renal cell carcinoma (SIR = 22.46), post-transplant lymphoproliferative disorder (SIR = 8.36), prostate cancer (SIR = 2.22), bladder cancer (SIR = 3.24), thyroid cancer (SIR = 10.13) and PLOS ONE | DOI:10.1371/journal.pone

  • Pre-Transplant Cancer Risk Factors and G-Chart Analysis and the funder of the grant support for this study did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

Read more

Summary

Introduction

Kidney transplantation has become the preferred treatment option for patients with renal failure since the first successful clinical transplantation in 1954 [1, 2]. There are no studies available so far that identify independent pre-transplant risk factors for de novo cancer in Germany. The aim of this study is to identify independent pre-transplant cancer risk factors after kidney transplantation and to assess the utility of G-chart analysis for clinical process control. This may contribute to the improvement of cancer surveillance processes in individual transplant centers

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.