Abstract

AbstractSeeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.