Abstract
D-glucose transport across the intestinal brush-border membrane involves two transport systems designated here as systems 1 and 2. Kinetic properties for both D-glucose and methyl alpha-D-glucopyranoside transport were measured at 35 degrees C by using brush-border membrane vesicles prepared from either control, fasted (48 hr), or semistarved (10 days) animals. The results show the following: (i) The sugar influx rate by simple diffusion was identical under either altered condition. (ii) Semistarvation stimulated D-glucose uptake by system 2 (both its Vmax and Km increased), whereas system 1 was untouched. (iii) Fasting increased the capacity of system 1 without affecting either Km of system 1 or Vmax and Km of system 2. The effect of fasting on Vmax of system 1 cannot be attributed to indirect effects from changes in ionic permeability because the kinetic difference between control and fasted animals persisted when the membrane potential was short-circuited with equilibrated K+ and valinomycin. This work provides further evidence for the existence of two distinct sodium-activated D-glucose transport systems in the intestinal brush-border membrane, which adapt independently to either semistarvation or fasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.