Abstract

BackgroundThe genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally.ResultsNon-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent.ConclusionThe three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.

Highlights

  • The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized

  • The analysis included data from 52 N. lactamica isolates, comprising 46 unique seven locus sequence types (STs) sampled from a population of 271 isolates used to analyse diversity in N. lactamica [30], 20 isolates representing 20 unique STs from the 107 N. meningitidis isolates originally used to define multilocus sequence typing (MLST) [29], and subsequently analysed at additional loci [34], and seven complete Neisseria genomes downloaded from publicly available databases

  • Genealogical relationships of N. lactamica, N. meningitidis, and N. gonorrheoae The nucleotide sequences of 19 housekeeping genes from 52 N. lactamica, 25 meningococcal and two gonococcal isolates were used to generate a genealogy with the CLONALFRAME algorithm [40]

Read more

Summary

Introduction

The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. Carriage of N. lactamica is high in infants and young children and declines as the age of the human host population rises. The converse is true for the meningococcus, the carriage prevalence of which is low in infants and young children but rises with host age, generally reaching its highest in adolescents and young adults [15,16]. The idea that the colonisation of children with N. lactamica plays a role in the development of immunity to the meningococcus [23,24,25] has further stimulated comparative investigations of these two organisms and anti-meningococcal vaccines based N. lactamica have been proposed at various times [26,27]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call