Abstract

Selective attention to a spatial location has shown enhanced perception and facilitate behavior for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of sync with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either color or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory) was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late) with the rhythmic cue. Results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced behavior independently.

Highlights

  • Our sensory system is constantly exposed to vast amounts of information

  • In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectancy in both unimodal and crossmodal conditions

  • This indicated that participants followed instructions and the results replicated what has previously been observed in unimodal visual (e.g., Posner, 1980; Wright and Ward, 1994) and auditory spatial attention tasks (Spence and Driver, 1994), as well as audiovisual crossmodal tasks (Spence and Driver, 1996; or Spence, 2010 for a review)

Read more

Summary

Introduction

Our sensory system is constantly exposed to vast amounts of information. To efficiently deal with this information and guide behavior we need to select, prioritize and predict certain events and stimuli over others. The most common method to explore the behavioral effects of endogenous and exogenous attention has been using the Posner cueing task (Posner, 1980). The targets are preceded by a cue, usually centrally located, informing the most likely location of the target (70–80% likelihood). The cue, usually peripheral, does not give any indication of where the target may appear, the cue typically elicits effects on target processing (Santangelo and Spence, 2008). Selective attention to a spatial location has shown to enhance perceptual processing (e.g., Mangun and Hillyard, 1990; Yeshurun and Carrasco, 1998) as well as facilitate response times (e.g., Posner et al, 1980) to visual stimuli at attended as compared to unattended locations (for a recent review see Carrasco, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call