Abstract

Let G be a simple, regular graph of order n and degree ?. The independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish new upper bounds, as functions of n and ?, for the independent domination number of regular graphs with $n/6<\delta< (3-\sqrt{5})n/2$ . Our two main theorems complement recent results of Goddard et al. (Ann. Comb., 2011) for larger values of ?.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.