Abstract
In the ECG signals, T-waves play a very important role in the detection of cardiac arrest. During myocardial ischemia, the first significant change occurs on the T-wave. These waves are generated due to the repolarization of the heart ventricle. The independent detection of T-waves is a bit challenging due to its variable nature, therefore, most of the algorithms available in the literature for T-wave detection use the detection of the QRS complex as the starting point. But accurate detection of Twave is very much required, as clinically, the first indication of a shortage of blood supply to the heart muscle (myocardial ischemia) shows up as changes in T-wave followed by other changes in the morphology of the ECG signal. In this paper, an efficient and novel algorithm based on Continuous Wavelet Transform (CWT) is presented to detect the Twave independently. In CWT, for better matching, a new mother wavelet is designed using the pattern and shape of the Twave. This algorithm is validated on all the signals of the QT database. The algorithm attains an average sensitivity of 99.88% and positive predictivity of 99.81% for the signals annotated by the cardiologists in the database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.