Abstract

Cardinium and Wolbachia are common maternally inherited reproductive parasites that can coinfect arthropods, yet interactions between both bacterial endosymbionts are rarely studied. For the first time, we report their independent expression of complete cytoplasmic incompatibility (CI) in a coinfected host, and CI in a species of the haplodiploid insect order Thysanoptera. In Pezothrips kellyanus, Cardinium-induced CI resulted in a combination of male development (MD) and embryonic female mortality (FM) of fertilized eggs. In contrast, Wolbachia-induced CI resulted in FM together with postembryonic mortality not previously reported as a CI outcome. Both endosymbionts appeared to not influence fecundity but virgins produced more offspring than mated females. In coinfected individuals, Wolbachia density was higher than Cardinium. Wolbachia removal did not impact Cardinium density, suggesting a lack of competition within hosts. Maternal transmission was complete for Wolbachia and high for Cardinium. Our data support theoretical predictions and empirical detection of high endosymbiont prevalence in field populations of the native range of this pest thrips. However, previous findings of more frequent loss of Wolbachia than Cardinium, particularly in field populations of the host's invasive range, suggest that genetic diversity or varying environmental factors between field populations also play a role in shaping host-endosymbiont dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.