Abstract

Refined control over the mechanical properties of hydrogel-based materials has increased as these materials have found broader application. We investigated various aspects of gel cross-linking to independently regulate the elastic modulus (E) and toughness (W). Alginate hydrogels were chosen as a model system, since alginate can be gelled via ionic or covalent cross-linking, and its block structure dictates the structure of ionic cross-links. Increasing the density of covalent cross-links increased E but led to more brittle gels. In contrast, increasing the density of ionic cross-links and length of the blocks responsible for the cross-linking increased both E and W. Oscillatory shear measurements suggested that ionic cross-links and their length were important in dissipating the energy of deformation due to a partial and stepwise de-cross-linking. In contrast, covalently cross-linked gels underwent energy accumulation. This study demonstrates a novel approach to independently control different mechanical properties of gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.