Abstract

Swimming microrobots have a variety of applications including drug delivery, sensing, and artificial fertilization. Their small size makes onboard actuation very hard, and therefore an external source such as the magnetic field is a practical way to steer and move the robot. In this paper, we have designed a novel microrobot steered by magnetic paddles. We have also discussed design parameters where, based on the conducted simulation, the robot speed reaches 520 um/s. It is shown that the microrobot speed depends on the robot paddle dimensions. According to the microrobots motion characteristics and their different reactions to the same input, we have designed a steering strategy for point-to-point control of multiple microrobots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.